

Dr.SNS RAJALAKSHMI COLLEGE OF ARTS AND SCIENCE,

(AUTONOMOUS)

COIMBATORE-641049

Accredited by NAAC (Cycle III) with “A+” Grade Recognized

by UGC, Approved by AICTE, New Delhi and Affiliated to

Bharathiar University, Coimbatore.

DEPARTMENT OF COMPUTER APPLICATIONS

Course Code / Course Name: 23UCU401 /Programming in C

YEAR :2023-2024

CLASS :I BCA “A”

STAFF NAME :Dr.A.DEVI

Topic : Structure of C Language program

Structure of C Language program

1) Comment line

2) Preprocessor directive

3) Global variable declaration

4) main function()

{

Local variables;

Statements;

}

User defined function

}

}

Comment line

It indicates the purpose of the program. It is represented as

/*……………………………..*/

Comment line is used for increasing the readability of the program. It is useful in explaining the

program and generally used for documentation. It is enclosed within the decimeters. Comment line

can be single or multiple line but should not be nested. It can be anywhere in the program except

inside string constant & character constant.

Preprocessor Directive:

#include<stdio.h> tells the compiler to include information about the standard

input/output library. It is also used in symbolic constant such as #define PI 3.14(value). The

stdio.h (standard input output header file) contains definition &declaration of system defined

function such as printf(), scanf(), pow() etc. Generally printf() function used to display and

scanf() function used to read value

Global Declaration:

This is the section where variable are declared globally so that it can be access by all the functions

used in the program. And it is generally declared outside the function :

main()

It is the user defined function and every function has one main() function from where actually

program is started and it is encloses within the pair of curly braces.

The main() function can be anywhere in the program but in general practice it is placed in the

first position.

Syntax :

main()

{

……..

……..

……..

}

The main() function return value when it declared by data type as int main()

{

return 0 }

The main function does not return any value when void (means null/empty) as void main(void)

or void main()

{

printf (“C language”);

}

Output: C language

The program execution start with opening braces and end with closing brace.

And in between the two braces declaration part as well as executable part is mentioned. And at

the end of each line, the semi-colon is given which indicates statement termination.

/*First c program with return statement*/

#include <stdio.h> int

main (void)

{

printf ("welcome to c Programming language.\n"); return 0;

}

Output: welcome to c programming language.

Steps for Compiling and executing the Programs

A compiler is a software program that analyzes a program developed in a particular computer language and

then translates it into a form that is suitable for execution on a particular computer system. Figure below

shows the steps that are involved in entering, compiling, and executing a

computer program developed in the C programming language and the typical Unix commands that would

be entered from the command line.

Step 1: The program that is to be compiled is first typed into a file on the computer system.

 There are various conventions that are used for naming files, typically be

any name provided the last two characters are “.c” or file with extension .c. So, the file name

prog1.c might be a valid filename for a C program. A text editor is usually used to enter the C

program into a file. For example, vi is a popular text editor used on Unix systems. The program

that is entered into the file is known as the source program because it represents the original form

of the program expressed in the C language.

Step 2: After the source program has been entered into a file, then proceed to have it compiled.

The compilation process is initiated by typing a special command on the system. When this

command is entered, the name of the file that contains the source program must also be specified.

For example, under Unix, the command to initiate program compilation is called cc. If we are using

the popular GNU C compiler, the command we use is gcc.

Typing the line

gcc prog1.c or cc prog1.c

In the first step of the compilation process, the compiler examines each program

statement contained in the source program and checks it to ensure that it conforms to the syntax

and semantics of the language. If any mistakes are discovered by the compiler during this phase,

they are reported to the user and the compilation process ends right there. The errors then have to

be corrected in the source program (with the use of an editor), and the compilation process must be

restarted. Typical errors reported during this phase of compilation might be due to an expression

that has unbalanced parentheses (syntactic error), or due to the use of a variable that is not

“defined” (semantic error).

Step 3: When all the syntactic and semantic errors have been removed from the program, the

compiler then proceeds to take each statement of the program and translate it into a “lower”

form that is equivalent to assembly language program needed to perform the identical task.

Step 4: After the program has been translated the next step in the compilation process is to

translate the assembly language statements into actual machine instructions. The assembler takes

each assembly language statement and converts it into a binary format known as object code,

which is then written into another file on the system. This file has the same name as the source

file under Unix, with the last letter an “o” (for object) instead of a “c”.

Step 5: After the program has been translated into object code, it is ready to be linked. This process

is once again performed automatically whenever the cc or gcc command is issued under Unix. The

purpose of the linking phase is to get the program into a final form for execution on the computer.

If the program uses other programs that were previously processed by the

compiler, then during this phase the programs are linked together. Programs that are used from the

system’s program library are also searched and linked together with the object program during

this phase.

The process of compiling and linking a program is often called building.

The final linked file, which is in an executable object code format, is stored in another file on the

system, ready to be run or executed. Under Unix, this file is called a.out by default. Under

Windows, the executable file usually has the same name as the source file, with the c extension

replaced by an exe extension.

Step 6: To subsequently execute the program, the command a.out has the effect of

loading the program called a.out into the computer’s memory and initiating its execution.

When the program is executed, each of the statements of the program is sequentially executed in

turn. If the program requests any data from the user, known as input, the program temporarily

suspends its execution so that the input can be entered. Or, the program might simply wait for an

event, such as a mouse being clicked, to occur. Results that are displayed by the program, known

as output, appear in a window, sometimes called the console. If the program does not produce the

desired results, it is necessary to go back and reanalyze the program’s logic. This is known as the

debugging phase, during which an attempt is made to remove all the known problems or bugs

from the program. To do this, it will most likely be necessary to make changes to original source

program.

/* Simple program to add two numbers .. */

#include <stdio.h> int

main (void)

{

int v1, v2, sum; //v1,v2,sum are variables and int is data type declared v1 = 150;

v2 = 25;

sum = v1 + v2;

printf ("The sum of %i and %i is= %i\n", v1, v2, sum); return 0;

}

Output:

The sum of 150 and 25 is=175

	Topic : Structure of C Language program
	Structure of C Language program
	Comment line
	Preprocessor Directive:
	Global Declaration:
	main()
	/*First c program with return statement*/
	Steps for Compiling and executing the Programs

